A Short Introduction to Agile Methods

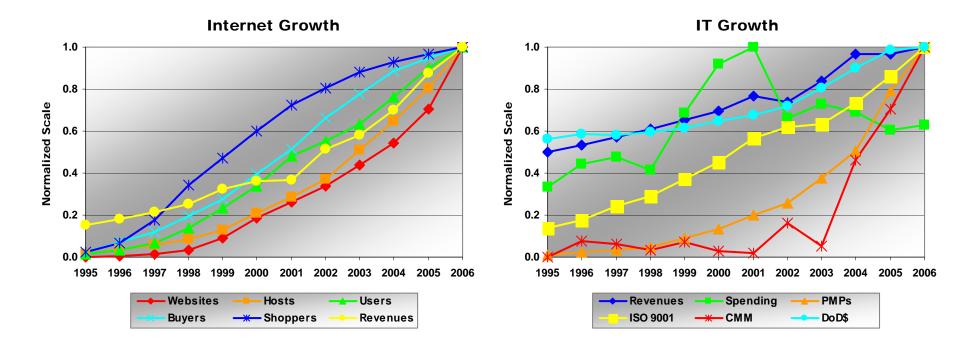
A synopsis based on the background, examples, deliverables, costs, benefits, and unique features

Dr. David F. Rico, PMP, CSM

Agenda

Background
 Examples
 Deliverables
 Business Value
 Other Considerations
 Conclusion
 References

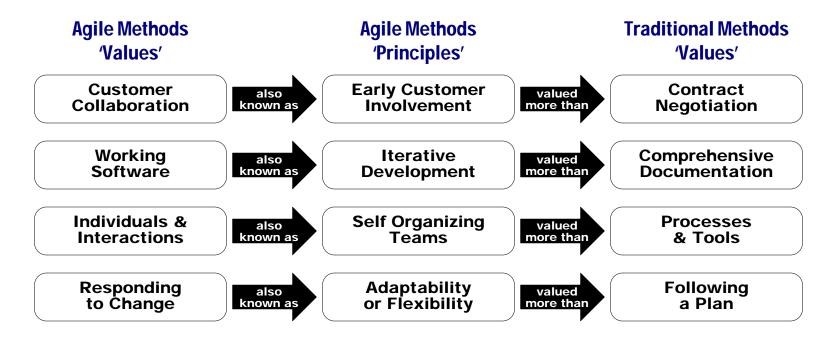
Purpose


- Provide an overview of Agile Methods using examples, artifacts, benefits, and other data
 - Agility is the ability to create and respond to change in order to profit in a turbulent business environment
 - Agility is prioritizing for maneuverability with respect to shifting requirements, technology, and knowledge
 - Agile methods use time-boxed iterations, adaptability, and evolutionary delivery to promote rapid flexibility
 - Agile methods promote quick response to changes in requirements as well as collaboration with customers
 - Agile methods are a better way of developing software using teams, collaboration, iterations, and flexibility

Key Terms

- □ **Software method.** An approach to the analysis, design, construction, and implementation of information systems.
- □ **Traditional method.** A software method with a focus on contracts, planning, processes, documentation, and tools.
- □ **Agile method.** A software method with a focus on teams, collaboration, working software, and responding to change.
- Software team. Small group responsible for making decisions, establishing needs, creating software, and ensuring success.
- Customer collaboration. A method of customer interaction and participation to obtain feedback and establish user needs.
- Iterative development. Creation of a large number of small, frequent, and time-boxed working operational software releases.
- Adaptability. A culture, attitude, process, and product enabling rapid, flexible, and easy adaptation to evolving customer needs.

IT Industry


□ U.S. firms spent \$700 billion on IT projects in 2006
 □ U.S. IT industry revenues reached \$3 trillion in 2006
 □ U.S. used Agile Methods on 300,000 projects in 2006

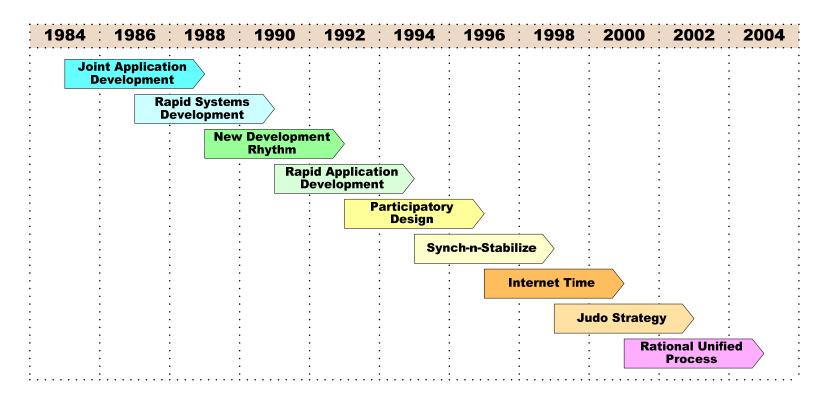
Rico, D. F. (2008). Internet and information technology growth statistics: 1995 to 2006. Retrieved September 1, 2008, from http://davidfrico.com/it-stats.xls

What are Agile Methods?

Lightweight' software development methodologies
 'Human-centric' approach to creating business value
 'Alternative' to heavy document-based methodologies

Agile Manifesto. (2001). Manifesto for agile software development. Retrieved September 3, 2008, from http://www.agilemanifesto.org

Agile vs. Traditional Methods


Sloanism vs. Taylorism and Fordism
 Craft-industry vs. scientific management
 Personal vs. impersonal human interactions

Pine		Boe	hm	N	lerur	
Agile	Traditional	Agile	Traditional	Agile	Traditional	
 Job-shop oriented Mass customization Micro-markets Sloanism Manufacturing cells Egalitarian Decentralized Empowerment Multi-disciplinary Collectivism Economy of scope Value Effectiveness Elegance Capability-based Customer satisfact. 	Mass marketFordism	 Unpredictable Small projects Turbulent Customer-centric Informal artifacts Tacit interaction User stories Simple design Automated testing Customer presence Developer-centric Egalitarian 	 Predictable Large projects Stability Contract-centric Formal documents Written interaction Specifications Formal architecture Formal test plans No customer Analyst-centric Authoritarian 	 Unpredictable People-centric Egalitarian Tacit knowledge Informal artifacts Multi-disciplinary Informal comm. Customer-critical Feature-focused Iterative process Organic Object-oriented 	 Predictable Process-centric Authoritarian Explicit knowledge Formal documents Specialization Formal comm. Customer-important Activity-focused Linear process Mechanistic Tech. agnostic 	

Pine, B. J. (1992). *Mass customization: The new frontier in business competition*. Boston, MA: Harvard Business School Press. Boehm, B., & Turner, R. (2004). *Balancing agility and discipline: A guide for the perplexed*. Boston, MA: Addison-Wesley. Nerur, S., Mahapatra, R., & Mangalaraj, G. (2005). Challenges of migrating to agile methodologies. *Communications of the ACM*, 48(5), 73-78.

Antecedents of Agile Methods

JAD involved customers in requirements analysis
 PD involved customers in architecture and designs
 Judo Strategy involved customers in implementation

Rico, D. F., Sayani, H. H., & Field, R. F. (2008). History of computers, electronic commerce, and agile methods. In M. V. Zelkowitz (Ed.), *Advances in computers: Emerging technologies, Vol. 73.* San Diego, CA: Elsevier.

Essence of Agile Methods

Small well-structured multi-disciplinary team
 Adaptable processes and product technologies
 Customer feedback on working software releases

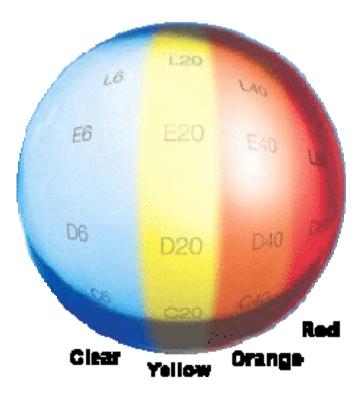
Highsmith, J. A. (2002). Agile software development ecosystems. Boston, MA: Addison-Wesley.

Agenda

Background

Examples
 Deliverables
 Business Value
 Other Considerations
 Conclusion
 References

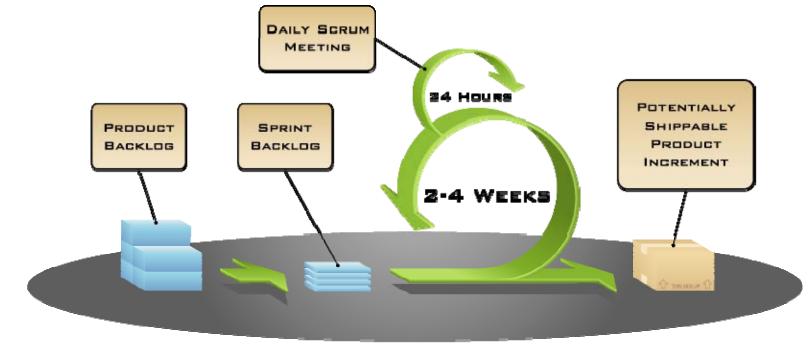
"Big 5" Agile Methods


The term "Agile Methods" was coined in 2001
 Extreme Programming was the first Agile Method
 Other Agile Methodologies came-to-light after 2001

Year	Method	Author	Firm	Process Elements	Major Features
1991	Crystal Clear	Cockburn	IBM	7 properties, 5 strategies, 7 stages, 9 tools, 22 artifacts	Use Cases, Domain Model
1993	Scrum	Sutherland	Easel	7 processes, 7 artifacts, 3 roles	Backlogs, Sprints, Daily Scrums
1993	Dynamic Systems Development	Millington	DSDM	9 principles, 5 stages, 15 tools, 12 roles, 23 artifacts	Iterations, Prototypes
1997	Feature-Driven Development	De Luca	Nebulon	5 processes, 8 practices, 14 roles, 29 tasks, 17 artifacts	Domain Model, Inspections
1999	Extreme Programming	Beck	Chrysler	Originally had 13 practices (now has 28 practices)	User Stories, Pair Programming, Tests

Highsmith, J. A. (2002). Agile software development ecosystems. Boston, MA: Addison-Wesley.

Crystal Methods


Created by Alistair Cockburn in 1991
 Consists of 5 goals, 9 practices, and 8 roles
 Scalable family of techniques for critical systems

Cockburn, A. (2002). Agile software development. Boston, MA: Addison-Wesley.

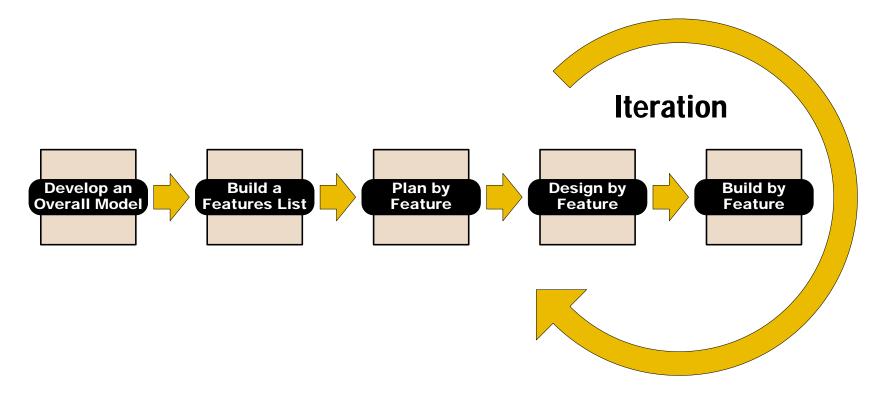
Scrum

Created by Jeff Sutherland at Easel in 1993
 Three basic phases—Planning, sprint, post-sprint
 Uses EVM to burn down backlog in 30-day iterations

COPYRIGHT @ SCOS, MOUNTAIN COAT SOFTWARE

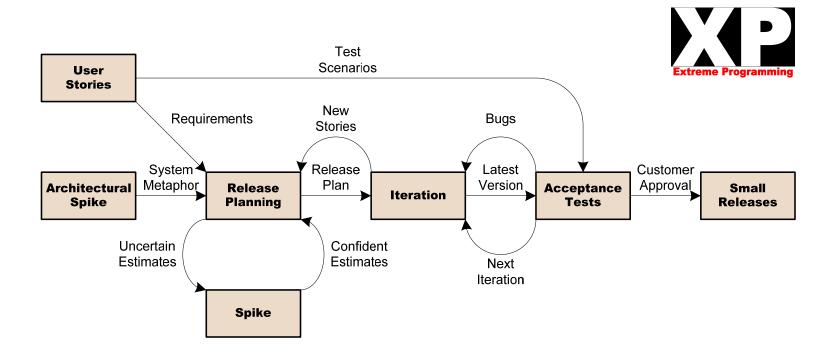
Schwaber, K., & Beedle, M. (2001). Agile software development with scrum. Upper Saddle River, NJ: Prentice-Hall.

Dynamic Systems Develop.


Created by consortium of British firms in 1993
 Consists of 5 phases, 15 practices, and 12 roles
 Non-proprietary RAD approach from the early 1990s

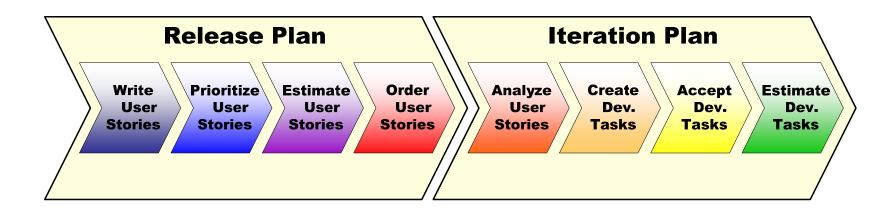
Stapleton, J. (1997). DSDM: A framework for business centered development. Harlow, England: Addison-Wesley.

Feature Driven Development


Created by Jeff De Luca at Nebulon in 1997
 Consists of 5 phases, 29 tasks, and 8 practices
 Uses object oriented design and Fagan inspections

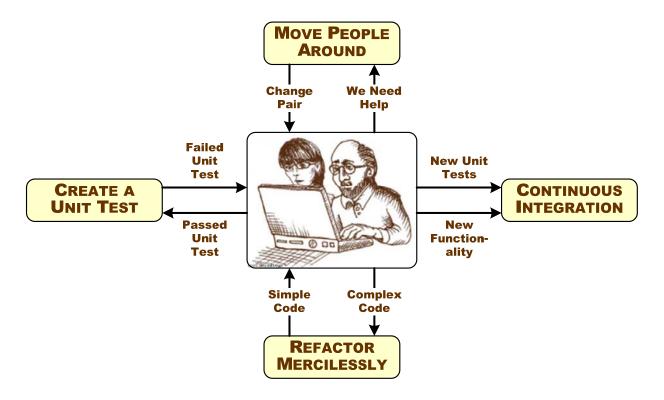
Palmer, S. R., & Felsing, J. M. (2002). A practical guide to feature driven development. Upper Saddle River, NJ: Prentice-Hall.

Extreme Programming


Created by Kent Beck at Chrysler in 1998
 Grown from 13 to more than 28 rules/practices
 Popularized pair programming and test-driven dev.

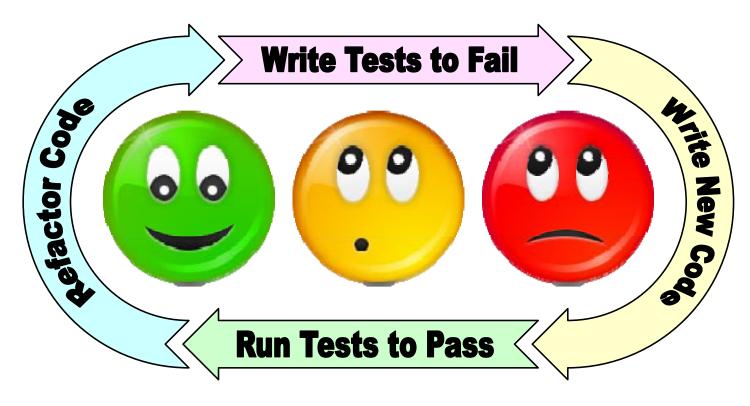
Beck, K. (2000). Extreme programming explained: Embrace change. Reading, MA: Addison-Wesley.

Release Planning


Created by Kent Beck at Chrysler in 1998
 Consists of user stories and development tasks
 Used as project planning process for XP and Scrum

Beck, K., & Fowler, M. (2004). Planning extreme programming. Upper Saddle River, NJ: Addison-Wesley.

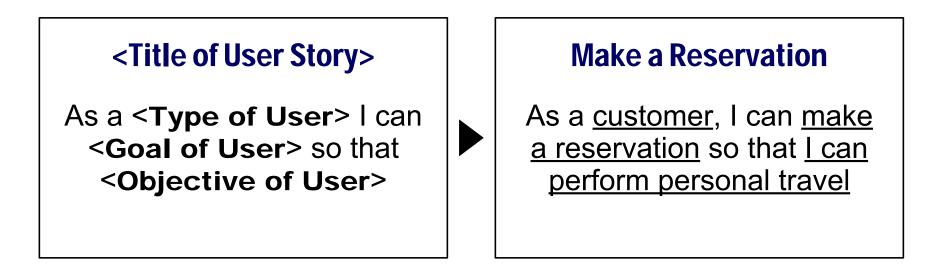
Pair Programming


Term coined by Jim Coplien in 1995
 Consists of two side-by-side programmers
 Considered an efficient problem solving technique

Williams, L., & Kessler, R. (2002). Pair programming illuminated. Boston, MA: Pearson Education.

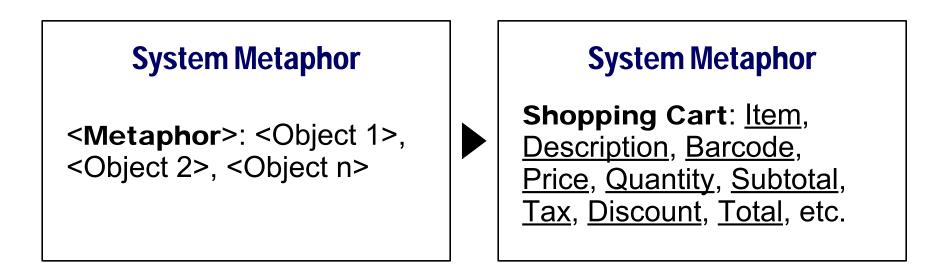
Test Driven Development

Term coined by Kent Beck in 2003
 Consists of writing unit tests before coding
 Believed to be a primary means of quality control

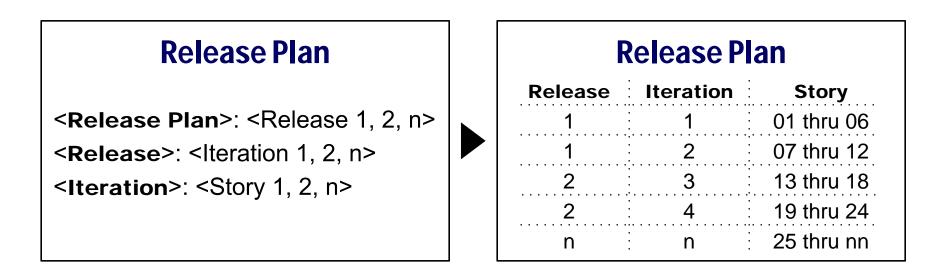

Beck, K. (2003). Test-driven development: By example. Boston, MA: Addison-Wesley.

Agenda

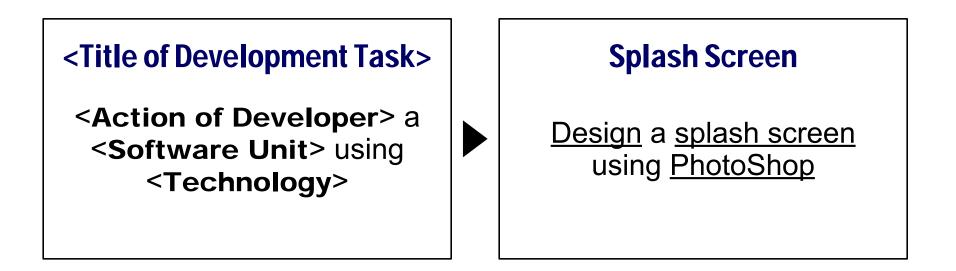
- Background
- Examples
- Deliverables
 Business Value
 Other Considerations
 Conclusion
 References


User Story

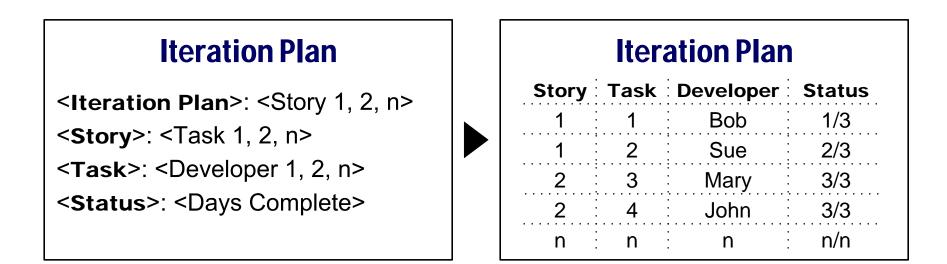
A function or feature of value to a customer
 An estimable and testable software requirement
 Six user stories should be implemented per iteration


System Metaphor

Simple story about how the whole system works
 Overarching 10,000 foot view of system architecture
 Pushes the system into a sense of coherent cohesion


Release Plan

Fluid, informal roadmap for planning releases
 Includes dates for releases, iterations, and stories
 Must prioritize, split, estimate, and order user stories


Development Tasks

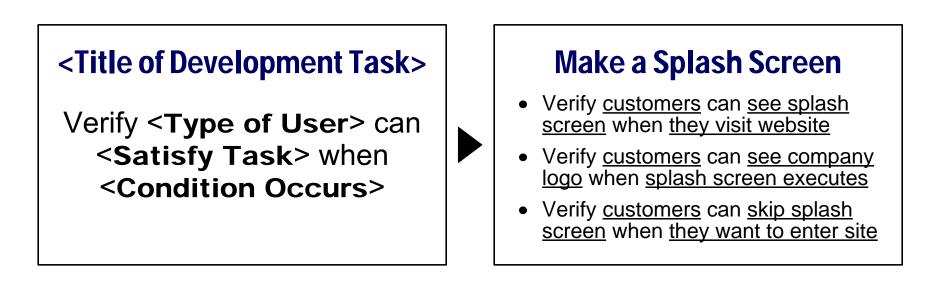
Customers read story to communicate expectations
 Developers brainstorm tasks to satisfy user stories
 Development tasks should last two to three days

Iteration Plan

Plan that divides iterations into development tasks
 Each iteration is one to three weeks in duration
 Iteration plans updated using daily standups

Acceptance Tests

Black-box, functional tests to be performed
 Specified by customers during iteration planning
 Run when user stories and unit tests are completed

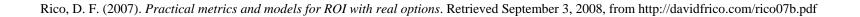


- Verify <u>customers</u> can <u>establish a</u> <u>reservation</u>
- Verify <u>customers</u> can <u>change a</u> <u>reservation</u>
- Verify <u>customers</u> can <u>cancel a</u> <u>reservation</u>

Unit Tests

A test written from the developer's perspective
 Each task is implemented by two programmers
 Unit tests are developed prior to implementation

Agenda


Background
 Examples
 Deliverables
 Business Value
 Other Considerations
 Conclusion
 References

ROI Metrics for Agile Methods

A major principle of Agile Methods is creating value
 ROI is the measure of value within Agile Methods
 Costs and benefits are the basic inputs to ROI

ROI Metric	ROI Formula
Costs	$\sum_{i=1}^{n} Cost_{i}$
Benefits	$\sum_{i=1}^{n} Benefit_{i}$
Benefit to Cost Ratio (B/CR)	$\frac{Benefits}{Costs}$
Return on Investment (ROI)	$\frac{Benefits-Costs}{Costs} \times 100\%$
Net Present Value (NPV)	$\sum_{i=1}^{Y_{ears}} \frac{Benefits_i}{(1+Discount Rate)^{Y_{ears}}} - Costs_0$
Break Even Point (BEP)	$\frac{Costs}{NPV} \times 60 Months$
Real Options Analysis (ROA)	$N(d_1) \times Benefits - N(d_2) \times Costs \times e^{-Rate \times Years}$

 $dl = [ln(Benefits \div Costs) + (Rate + 0.5 \times Risk^2) \times Years] \div Risk \times \sqrt{Years}, d2 = d1 - Risk \times \sqrt{Years}$

Studies of Agile Methods

Based on a recent study of Agile Methods
 Represents 109 data points from 69 studies
 Agile is 459% better than Traditional Methods

Agile Methods

Category	Low	Median	High	
Cost	10%	26%	70%	
Schedule	11%	71%	700%	
Productivity	14%	122%	712%	
Quality	10%	70%	1,000%	
Satisfaction	70%	70%	70%	
ROI	240%	2,633%	8,852%	

Traditional Methods

Category	Low	Median	High
Cost	3%	20%	87%
Schedule	2%	37%	90%
Productivity	9%	62%	255%
Quality	7%	50%	132%
Satisfaction	-4%	14%	55%
ROI	200%	470%	2,770%

Costs of Agile Methods

Represents 47 data points from 29 studies
 Based on average productivity and quality data
 Better quality is related to lower total lifecycle costs

Method	LOC	Development	Hours	Maintenance	Hours	Rate	Total Cost
ХР	10,000	LOC ÷ 16.1575	619	0.7466 imes KLOC imes 100	747	\$100	\$136,548
TDD	10,000	LOC ÷ 29.2800	342	$2.1550 \times \text{KLOC} \times 100$	2,155	\$100	\$249,653
PP	10,000	LOC ÷ 33.4044	299	2.3550 × KLOC × 100	2,355	\$100	\$265,437
Scrum	10,000	LOC ÷ 05.4436	1,837	3.9450 × KLOC × 100	3,945	\$100	\$578,202
Agile	10,000	LOC ÷ 21.2374	471	1.7972 × KLOC × 100	1,797	\$100	\$226,805

Agile Methods — Total Lifecycle Cost Models

Benefits of Agile Methods

Traditional costs based on quality and productivity
 Test benefits are subtracted from traditional cost
 Agile costs are subtracted from traditional costs

Method	LOC	Traditional Methods	Trad. Cost	Agile Cost	Benefits
ХР	10,000	$(LOC \times 10.51 - 6,666.67 \times 9) \times 100$	\$4,509,997	\$136,548	\$4,373,449
TDD	10,000	(LOC × 10.51 – 6,666.67 × 9) × 100	\$4,509,997	\$249,653	\$4,260,344
РР	10,000	(LOC × 10.51 – 6,666.67 × 9) × 100	\$4,509,997	\$265,437	\$4,244,560
Scrum	10,000	(LOC × 10.51 – 6,666.67 × 9) × 100	\$4,509,997	\$578,202	\$3,931,795
Agile	10,000	(LOC × 10.51 – 6,666.67 × 9) × 100	\$4,509,997	\$226,805	\$4,283,192

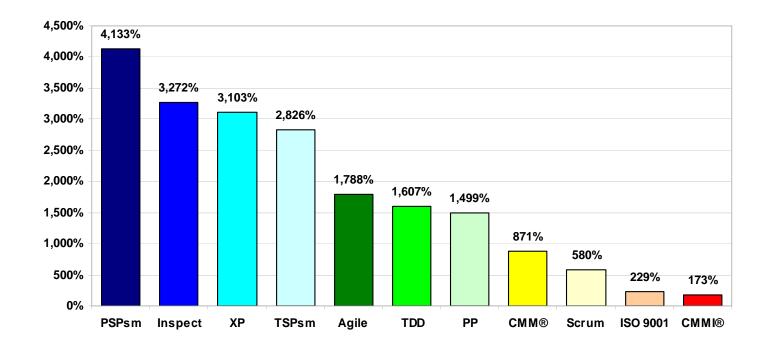
Agile Methods — Total Lifecycle Benefit Models

ROI of Agile Methods

Costs and benefits were input to ROI metrics
 Agile Methods were ranked according their ROI
 Agile Methods with higher quality had higher ROI

Method	Costs	Benefits	B/CR	ROI	NPV	BEP	ROA
ХР	\$136,548	\$4,373,449	32:1	3,103%	\$3,650,401	\$4,263	\$4,267,105
Agile	\$226,805	\$4,283,192	19:1	1,788%	\$3,481,992	\$12,010	\$4,110,308
TDD	\$249,653	\$4,260,344	17:1	1,607%	\$3,439,359	\$14,629	\$4,074,506
РР	\$265,437	\$4,244,560	16:1	1,499%	\$3,409,908	\$16,599	\$4,050,918
Scrum	\$578,202	\$3,931,795	7:1	580%	\$2,826,320	\$85,029	\$3,660,805

ROI of Agile vs. Traditional


Traditional Methods data was used for comparison
 All methods were ranked according to their ROI
 Methods with higher quality had higher ROI

Method	Costs	Benefits	B/CR	ROI	NPV	BEP	ROA
PSP sm	\$105,600	\$4,469,997	42:1	4,133%	\$3,764,950	\$945	\$4,387,756
Inspection	\$82,073	\$2,767,464	34:1	3,272%	\$2,314,261	\$51,677	\$2,703,545
ХР	\$136,548	\$4,373,449	32:1	3,103%	\$3,650,401	\$4,263	\$4,267,105
TSPsm	\$148,400	\$4,341,496	29:1	2,826%	\$3,610,882	\$5,760	\$4,225,923
Agile	\$226,805	\$4,283,192	19:1	1,788%	\$3,481,992	\$12,010	\$4,110,118
TDD	\$249,653	\$4,260,344	17:1	1,607%	\$3,439,359	\$14,629	\$4,073,167
PP	\$265,437	\$4,244,560	16:1	1,499%	\$3,409,908	\$16,599	\$4,048,404
SW-CMM®	\$311,433	\$3,023,064	10:1	871%	\$2,306,224	\$153,182	\$2,828,802
Scrum	\$578,202	\$3,931,795	7:1	580%	\$2,826,320	\$85,029	\$3,622,271
ISO 9001	\$173,000	\$569,841	3:1	229%	\$320,423	\$1,196,206	\$503,345
CMMI®	\$1,108,233	\$3,023,064	3:1	173%	\$1,509,424	\$545,099	\$2,633,052

Rico, D. F. (2008). What is the ROI of agile vs. traditional methods? Retrieved September 3, 2008, from http://davidfrico.com/rico08b.pdf

ROI of Individual Methods

Data for all methods was used for comparison
 Best Agile and Traditional Methods had top ROI
 Agile Methods better than big Traditional Methods

Rico, D. F. (2008). What is the ROI of agile vs. traditional methods? Retrieved September 3, 2008, from http://davidfrico.com/rico08b.pdf

Agenda

Background

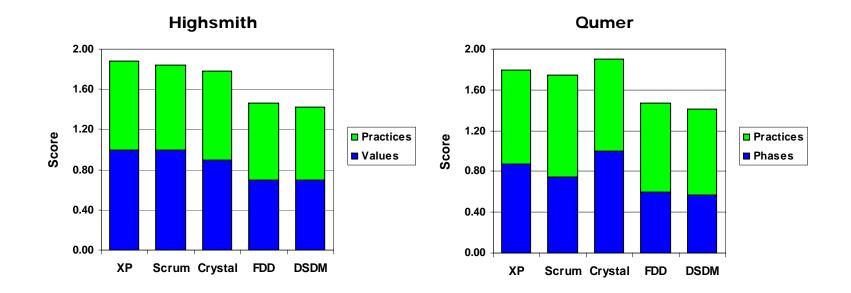
Examples

Deliverables

Business Value

- Other Considerations
 - Conclusion

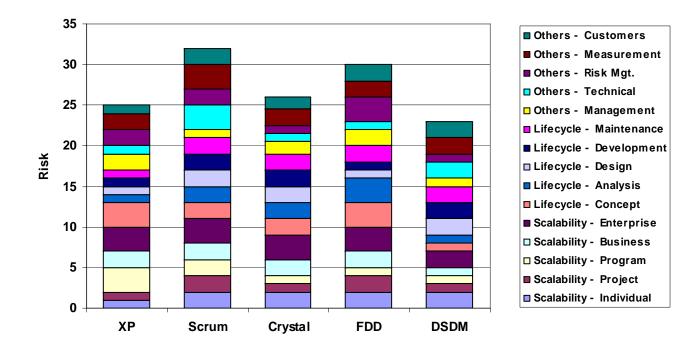
References


Strengths & Weaknesses

Some follow the Agile Manifesto better than others
 Some have more process and document formality
 Often mistakenly compared to traditional methods

Method	Strengths	Weaknesses
ХР	 Technical practices Customer ownership Frequent feedback Widely known 	Onsite customerInformal documentationLittle or no architecture
Scrum	 Self organizing teams Customer participation Focus on business value Certification process 	 No sub-disciplines No technical practices Feature prioritization
Crystal	 Scalable methodology Support for safety-critical systems Scalable project team size Emphasis on testing 	 Requires co-located teams Backward and forward compatibility Non-real time scalability
FDD	 Support for parallel teams Product feature focused Easy to adopt Scales to large teams or projects 	 Promotes individual code ownership Release planning is not well-defined Incompatible with other approaches
DSDM	 Emphasis on testing Business focused Prioritization of requirements Sets stakeholder expectations early 	 Most heavyweight approach Continuous user involvement Heavy documentation Proprietary approach

Degree of Agility


Agile Manifesto is a great way to measure agility
 Some do have a high degree of process rigidity
 These tend to be more of a popularity contest

Highsmith, J. A. (2002). *Agile software development ecosystems*. Boston, MA: Addison-Wesley. Qumer, A., & Henderson-Sellers, B. (2008). An evaluation of the degree of agility in six agile methods. *IS&T*, 50(4), 280-295.

Degree of Risk

Agile Manifesto should be used to measure risk
 Risk is often measured using Traditional Methods
 Some traditional factors may be considered (not all)

Boehm, B., & Turner, R. (2004). Balancing agility and discipline: A guide for the perplexed. Boston, MA: Addison-Wesley.

Common Mistakes

Laissez-faire attitude to Agile Methods is a mistake
 Agile Methods require a measure of commitment
 Involve resources, training, and compliance

No.	Common Mistakes
1.	Thinking that Agile means "no documentation" and "cowboy coding"
2.	Thinking that you can piecemeal Agile practices and gain all the benefits
3.	Thinking Agile stops at engineering teams and won't affect the rest of the organization
4.	Not having a champion
5.	Having the wrong people lead the effort and/or the teams
6.	Hanging on to the death march as a solution
7.	Allowing the team to say "you'll get it when you get it"
8.	Assuming you're Agile and only planning one iteration at a time
9.	Allowing the Agile team leader to say, "you figure it out"
10.	Lack of participation by the business
11.	Not bothering with the retrospective
12.	A values mismatch

Sliger, M., & Broderick, S. (2008). The software project manager's bridge to agility. Boston, MA: Addison-Wesley.

Critical Success Factors

Agile Methods-specific studies starting to emerge
 New studies focusing on values of Agile Manifesto
 Training, adherence, culture, and leadership are key

Category	Critical Success Factors						
Delivery	Regular delivery of software	Delivering important features first					
Technical	Well-defined coding standardsPursuing simple designRigorous refactoring activities	Right amount of documentationCorrect integration testing					
Personnel	 High competence and expertise Great motivation Managers knowledgeable in agile 	Adaptive management styleAppropriate technical training					
Management	 Agile requirements management Agile project management Agile configuration management 	 Good progress tracking mechanism Strong daily communication Honoring regular working schedule 					
Teamwork	Collocation of the whole teamCoherent self-organizing teamwork	 Projects with small team No multiple independent teams					
Customers	Good customer relationshipStrong customer commitment	Customer having full authority					

Chow, T., & Cao, D. B. (2008). A survey study of critical success factors in agile software projects. Journal of Systems and Software, 81(6), 961-971.

Project Management

Project management differs for Agile Methods
 Focuses on enhancing the performance of teams
 Agile project management is related to agile values

Principle	Practice	Leadership	Management		
Foster alignment	Organic teams	 Promote software craftsmanship Foster team collaboration Form a guiding coalition Cultivate informal communities of practice 	 Identify the project community Design a holographic formal structure Get self-disciplined team players Propose an adaptive IT enterprise 		
and cooperation	Guiding vision	 Evolve a team vision Align the team Envision a bold future Create and maintain shared expectations 	 Discover business outcomes Clearly delineate scope Estimate level of effort Design a vision box and elevator statement 		
	Simple rules	Enlist the team for changeFocus on business value	 Assess the status quo and customize method Develop a release/iteration plan/backlog Facilitate design, code, test, and deployment Conduct testing and manage release 		
Encourage emergence and self-organization	Open information	 Conduct a standup meeting daily Encourage feedback Build trust Link language with action 	 Collocate team members and practice pairing Negotiate a customer representative on-site Encourage the use of information radiators Map the project's value stream 		
	Light touch	 Fit your style to the situation Support roving leadership Go with the flow and maintain quality of work life Build on personal strengths and commitments 	Decentralize controlEstablish a pull task management system		
Institute leadership and adaptation	Adaptive leadership	Cultivate an embodied presencePractice embodied learning	 Get plus-delta feedback daily Monitor and adapt to simple rules/practices Conduct regular project reflections Conduct scenario planning 		

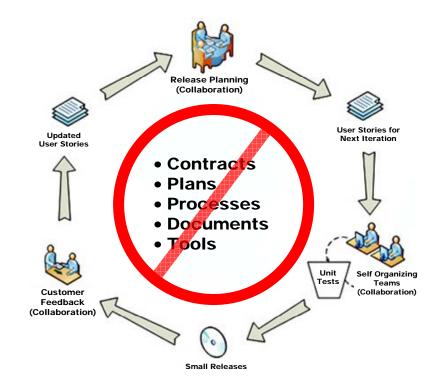
Augustine, S. (2005). Managing agile projects. Upper Saddle River, NJ: Prentice-Hall.

Adoption Framework

Models exist for measuring degree of agile adoption
 Lowest levels focus on basic tools and techniques
 Highest level focus on advanced agile practices

	Level	Embrace Change	Frequent Delivery	Human Centricity	Technical Excellence	Customer Collaboration
5	Ambient	Low ceremony	Agile estimation	 Ideal physical setup 	Test driven dev.Pair programmingTop performers	 Frequent interaction
4	Adapt	Client-driven iterationContinuous feedback	•		 Daily stand-ups Agile documentation User stories 	Accessible customerCustomer contract
3	Effective		 Risk-driven iterations Feature-driven Feature-tracking 	Self-organizing teamCollocated teams	 Continuous integ. Continuous improve. Unit testing Good performers 	
2	Evolve	Evolutionary stories	Continuous deliverMulti-level planning		 Configuration mgt. Iteration tracking Evolutionary design 	Evolutionary contract
1	Collaborate	Process reflection	Collaborative planning	Collaborative teamsEmpowered teams	 Coding standards Collaborative tools Task volunteering 	Committed customer

Sidky, A., Arthur, J., & Bohner, S. (2007). A disciplined approach to adopting agile practices: The agile adoption framework. *Innovations in Systems and Software Engineering*, *3*(*3*), 203-216.


Agenda

Background Examples Deliverables Business Value Other Considerations

References

Conclusion

Agile Methods are a fundamentally new paradigm
 Agile Methods are "not" lighter Traditional Methods
 They should not be viewed through a Traditional lens

Agenda

Background Examples Deliverables Business Value Other Considerations Conclusion

References

References

- □ Agile Manifesto. (2001). *Manifesto for agile software development*. Retrieved September 3, 2008, from http://www.agilemanifesto.org
- Beck, K. (2001). Extreme programming: Embrace change. Upper Saddle River, NJ: Addison-Wesley.
- □ Beck, K. (2003). *Test-driven development*. *By example*. Boston, MA: Addison-Wesley.
- Beck, K., & Fowler, M. (2004). *Planning extreme programming*. Upper Saddle River, NJ: Addison-Wesley.
- □ Cohn, M. (2004). User stories applied: For agile software development. Boston, MA: Addison-Wesley.
- □ Emery, P. (2002). *The dangers of extreme programming*. Retrieved September 3, 2008, from http://members.cox.net/cobbler/XPDangers.htm
- Highsmith, J. A. (2002). Agile software development ecosystems. Boston, MA: Addison-Wesley.
- □ Wake, W. C. (2002). *Extreme programming explored*. Upper Saddle River, NJ: Addison-Wesley.